

Taking your health to new heights

PRINCIPLES OF ULTRASOUND GUIDED MUSCULOSKELETAL INTERVENTIONS

Jonathan Finnoff, DO Tahoe Orthopedics and Sports Medicine Director of Sports Medicine, Barton Health South Lake Tahoe, CA

Disclosures

I have no financial disclosures

USG MSK INTERVENTIONS Objectives

- Definition
- Why US-guidance?
- General Principles
 - Indications & contraindications
 - Equipment
 - •Set-up
 - •Technique
 - Pitfalls & Pearls
- Conclusion

USG MSK INTERVENTIONS What Are We Talking About?

<u>Direct</u> Ultrasound Guidance

 Real time US visualization to guide the needle to the target area safely and efficiently

Targets

Joints & Bursa
Muscles
Tendon sheaths
Masses

Perineural

Muscle	Gieringer	Delagi	Trials	Hits	%	Endpoint	%	Cautions	%
Foot muscles									
Abductor digiti minimi	E	1	10	8	80	7	70	0	
Abductor hallucis	F	L.	10	9	90	7	70	4	40
First dorsal interosseous pedis	F	L	7	5	71	5	71	2	20
Leg muscles						0	1 C C	*	23
Tibialis anterior	F	P	10	9	90	9	90	1	10
Extensor digitorum longus	F	P	10	6	60	5	50	3	30
Extensor ballucis longue	F	P	10	D	00	7	70	3	30
Peroneus longus	F	Р	10	Б	50	5	50	1	10
Peroneus brevis	F	0	2	0	0	õ	0	ò	0
Peroneus tertius	F	0	2	0	0	0	0	1	50
Soleus	L	P	10	6	60	5	50	3	30
Lateral gastrocnemius	F	L	10	7	70	3	30	1	10
Modial gastroonomius	F	-	10	0	00	3	30	1	10
Tibialis posterior	F	Р	10	1	10	1	10	5	50
Tibialis posterior (lateral)	*	Р	8	4	50	4	50	1	13
Flexor hallucis longus	F	0	4	1	25	1	25	2	50
Flexor digitorum longus	F/P	D	2	2	100	2	100	0	0
Thigh muscles	20.004		1.00	-765	100000	10000	0.000		
Adductor longus	F	P	10	2	20	1	10	2	20
Adductor magnus	Р	P	10	3	30	3	30	2	20
Gracilis	Р	P	10	4	40	1	10	2	20
process remona rong ricau	100	F	10	1	70	5	50	1	10
Biceps femoris short head	F	L	10	3	30	1	10	2	20
Medial hamstrings		P	4	3	75	0	0	1	25
Semimembranosus	L	+	6	4	67	4	67	2	33
Semitendinosus	Р	1	3	1	33	1	33	0	0
lliopsoas	F	Р	7	6	86	6	86	3	43
Rectus femoris	Р	Р	7	3	43	3	43	0	0
Vastus lateralis	r	P	10	7	70	5	50	2	20
Vastus medialis	F	P	10	10	100	10	100	0	0
Popliteus	L	0	4	0	0	0	0	0	0
lip muscles	110-007		0104						
Gluteus maximus	Р	P	10	8	80	8	80	1	10
Gluteus medius	M	Р	8	4	50	4	50	0	0
Gluteus minimus	P	0	4	2	50	0	0	0	0
Tensor fascia lata	P	0	3	3	100	3	100	0	0
Obturator internus	Р	0	4	0	0	0	0	0	0
Piriformis	Р	0	4	0	0	0	0	0	0
Quadratus femoris	Р	0	4	0	0	0	0	0	0
Summary			263	150	57	119	45	46	17

Table 1: Technique Differences and Accuracy of Needle Placement in Lower-Limb Muscles

(Haig et al. Arch Phys Med Rehabil 2003)

Study: Lower Limb Muscles								
Muscle	Method	Attempts	Hits	Adjusted	Same Nerve	Cautions	Dangers	Structure Pierced
First dorsal interosseus	B/N	34	31	31	32	0	0	
Abductor digiti minimi	В	16	11	13	15	0	0	
Abductor hallucis	В	16	12	12	14	0	0	
Adductor longus	В	16	3	6	13	2	0	
Adductor magnus	В	16	7	7	9	1	0	
Biceps femoris longus	В	14	5	7	7	0	0	
Biceps femoris short	В	16	4	5	5	3	0	
Extensor digitorum longus	В	16	10	10	14	1	0	
Extensor hallucis longus	в	14	11	12	12	1	0	
Peroneus long	В	13	9	9	9	0	1	
Gluteus maximus	B/N	20	13	17	13	0	0	
Gluteus medius	В	13	7	7	8	0	0	
Gracilis	В	16	2	6	8	1	0	
lliopsoas	B/N	19	12	12	12	1	2	Femoral nerve
Gastrocnemius lateral	B	16	5	13	13	0	2	Common peroneal nerve
Castroenemius medial	R	16	10	15	15	1	0	
Rectus femoris	в	12	5	8	11	0	0	
Medial hamstrings	В	22	14	14	15	0	0	
Soleus	B/N	28	22	24	27	3	1	Tibial nerve
Vastus lateralis	В	16	10	14	16	0	0	
Vastus medialis	В	16	16	16	16	0	0	
Tibialis posterior	В	27	11	12	24	5	2	Post tibial a., tibial n.
Tibialis anterior	В	13	10	11	11	1	0	

(Goodmurphy et al. J Clin Neurophysiol 2007)

Study: Unper Limb Muscles								
Muscle	Method	Attempts	Hits	Adjusted	Same Nerve	Cautions	Dangers	Structures Pierced
Bicens brachii loneus	В	12	8	9	11	0	1	Musculocutaneous n
Brachialis	B/N	20	14	14	20	1	0	
Anterior deltoid	B/N	19	11	12	17	0	0	
Middle deltoid	В	14	11	12	14	1	0	
Posterior deltoid	В	20	19	19	20	0	0	
Latiecimus dorei	B	14	10	14	12	0	0	
Pectoral major	В	13	4	12	7	0	0	
Major rhomb	в	14	5	7	9	0	0	
Serratus ant	в	20	11	12	12	0	0	
Supraspinatus	В	14	10	11	10	2	0	
Teres major	В	14	9	9	11	0	0	
Teres minor	В	14	4	4	4	0	0	
Infraspinatus	В	13	10	11	11	0	0	
Mid trapezius	В	13	2	11	5	0	0	
Latissimus head tricens	B	12	3	4	12	0	0	
Long head tricens	R	12	10	10	12	0	0	
Trapezius lower	В	14	7	12	6	0	0	
Infraspinatus	В	13	10	11	13	0	0	
Louotor coopula	D	11	6	6	9	0	0	
Rhomboid minor	в	13	3	9	6	0	0	
Abductor digit minimi	в	6	2	4	6	0	0	
Abductor pollicis brevis	B/N	13	2	2	13	0	0	
Abductor pollicis longus	В	11	3	4	5	0	0	
Adductor pollicis	В	6	6	6	6	0	0	
Anconeus	в	14	11	12	13	0	0	
Brachioradialis	В	14	4	10	14	3	0	
Extensor carpi ulnaris	в	14	5	11	12	0	0	
Extensor digitorum	В	14	5	13	14	0	0	
Extensor indicis	B/N	20	6	13	5	1	0	
Extensor pollicis longus	в	14	2	4	10	0	0	
Flexor carpi radialis	в	14	1	3	11	3	2	Median n.
Flexor carpi ulnaris	B/N	18	2	6	14	2	0	Ulnar n.
Flexor digit profundus	B/N	24	16	18	19	3	1	Ulnar n.
Flexor dig superficialis	В	10	2	8	3	0	1	Ulnar n.
Flexor pollicis longus	B	14	2	3	3	0	2	Radial a.
Opponens politicis	DAL	12	10	10	12	0	0	Median n.
Pronator quadratus	B	14	5	7	8	2	0	
Pronator teres	B/N	20	12	13	17	2	0	

(Goodmurphy et al. J Clin Neurophysiol 2007)

		Non-guided		Ultrasound-guided			
Muscle	No. of attempts	Correct placement	Percent accuracy	No. of attempts	Correct placement	Percent accuracy	
Rectus femoris	4	0	0	4	4	100	
Gracilis	4	3	75	4	4	100	
Short head biceps femoris	4	4	100	4	4	100	
Long head biceps femoris	4	1	25	4	4	100	
Semitendinosis	4	0	0	4	2	50	
Popliteus	4	0	0	4	4	100	
Tibialis anterior	4	4	100	4	4	100	
Extensor hallucis longus	4	0	0	4	4	100	
Peroneus longus	4	3	75	4	4	100	
Peroneus tertius	4	3	75	4	4	100	
Tibialis posterior	4	2	50	4	4	100	
Flexor hallucis longus	4	1	25	4	4	100	
Abductor hallucis	4	1	25	4	4	100	
First dorsal interosseous pedis	4	0	0	4	4	100	

(Boone et al. Muscle Nerve 2011,

 <u>Accuracy</u> 	<u>US</u>	Palpation	Fluoro
GH joint	95% ¹	79-83% ^{1,4}	
SA-SD bursa	100% ¹	63% ¹	60% ²
AC joint	100% ^{1,3}	40-67% ^{1,3,4}	
Knee	96-100% ^{1,5,6}	55-79% ^{1,5,6}	
BT Sheath	100%7	66.6% ⁷	
PIP & MCP jts	96% ⁸	59% ⁸	
Inf Arthritis Jt Injs	83% ⁹	66% ⁹	
GH Jt 1 st try	94% ¹⁰		72% ¹⁰

(¹Daley EL AJSM 2011, ²Mathews PV J Shoulder Elbow Surg 2005, ³Peck E PMR 2010, ⁴Partington PF J Shoulder Elbow Surg 1998, ⁵Park YB J Clin Ultrasound 2011, ⁶Curtiss HM PMR 2011 ⁷Hashiuchi T J Shoulder Elbow Surg 2011, ⁸Raza K Rheumatology 2003, ⁹Cunnington J Arthritis & Rheumatism 2010, ¹⁰Rutten MJ Eur Radiol 2009)

Barton

lealth

 Accuracy 	US	Palpation	<u>CT</u>
Per. Ten. Sheath ¹	100%	60%	
Piriformis ²	95%	30%	
Pes Ans. Bursa ³	92%	17%	
Lumbar facet jts ⁴	100%		100%
STT jt⁵	100%	80%	
Flex. Ten. Sheath	⁶ 70%	15%	
Tibiotalar jt ⁷	100%	85%	
Sinus Tarsi ⁷	90%	35%	

(¹Muir JJ Am J Phys Med Rehabil 2011, ²Finnoff JT J Ultrasound Med 2008, ³Finnoff JT PMR 2010, ⁴Galiano K Reg Anesth Pain Med 2007, ⁵Smith J J Ultrasound Med 2011, ⁶Lee DH J Ultrasound Med 2011, ⁷Wisniewski SJ PMR 2010)

- Mathews et al. evaluated the accuracy of anterolateral and posterior palpation-guided SA-SD bursa injection approaches.
- Used fluoro followed by dissection to confirm injectate location
 - Fluoro suggested accuracy rate of 90% for anterolateral approach, but dissection revealed only 60% were actually accurate
 - Take home point = fluoro couldn't accurately determine whether the injectate was or was not in the SA-SD bursa

(Mathews et al. J Shoulder Elbow Surg 2005)

 Efficacy 	<u>US-guided</u>	Palpation-guided
SA-SD Bursa ¹	VAS↓4	VAS \downarrow 2
	Greater ↑ ROM	
SA-SD Bursa ²	VAS ↓ 34.9	VAS ↓ 7.1
	SFA ↑ 15	SFA ↑ 5.6
SA-SD/GH Jt ³	4 x greater benefit t	han palp guided
SA-SD Bursa ⁴	NRS 1.6	NRS 3.3
	Good resp 81%	54%
SA-SD Bursa ⁵	Signif ↑ abd ROM	No Δ in ROM

(¹Ucuncu F Clin J Pain 2009, ²Naredo E J Rheumatol 2004, ³Eustace JA Ann Rheum Dis 1997, ⁴Zufferey P J Bone Spine 2011,⁵Chen MJL Am J Phys Med Rehabil 2006)

USG MSK INTERVENTIONS

Efficacy Knee

Carpal Tunnel³

NR Arth Rheum [S] 2010)

US-guided vsPalpation-guided 48% less procedural pain^{1,2} 42% more pain reduction¹ 183% more fluid aspirated² 107% more responders¹ 52% less non-responders¹ 77.1% less procedural pain 63.3% more pain reduction 84.6% more responders 51.6% less non-responders 71% longer pain relief (¹Sibbitt WL J Clin Rheumatol 2011, ²Sibbit WL Scand J Rheumatol 2011, ³Chavez-Chiang

EfficacyUS-guided vsPalpation-guidedInfl. Arthritis Inj181% less injection pain
35% more pain reduction
38% more responders
34% less non-responders
32% longer pain reliefInfl. Arthritis Inj250% greater pain relief

(¹Sibbitt WL J Rheumatol 2011, ²Cunnington J Arthritis & Rheumatism 2010)

Cost Effectiveness Knee¹

Carpal Tunnel²

Infl. Arthritis Inj³

US-guided vs Palpation-guided 13% less cost/pt/yr 58% less cost/responder/yr 20.8% less cost/pt/yr 59.3% less cost/responder/yr 8% less cost/pt/yr 33% less cost/responder/yr

(¹Sibbitt WL J Clin Rheumatol 2011, ²Chavez-Chiang NR Arth Rheum [S] 2010, ³Sibbitt WL J Rheumatol 2011)

- More infections with US-guidance?
- NO!
- Study compared 402 pts who received IV's with USguidance with 402 with palpation-guidance
 - Palpation infections = 3 = 7.8/1000
 - US-guidance infections = 2 = 5.2/1000

(Adhikari S J Ultrasound Med 2010)

USG MSK INTERVENTIONS Indications For USG

1.

- When accuracy is importanta) Tibialis posteriorb) Short head of biceps femoris
 - Rhomboids

Procedures that normally require guidance 2.

- a) b)

- C d
- Deep target Difficult to identify target Avoid adjacent structures Diagnostic injections Certain therapeutic injections

Assess anatomy 3.

- Pathology Variations a) b)
- Soft tissue procedures 4. 5.
- High risk
 - a) b)
 - Lung Neurovascular
 - Anti-coagulation/bleeding d/o
- Avoid radiation 6.

11:26:14AM TIS0.5 2D 45% C 60 P Mec V

USG MSK INTERVENTIONS Contraindications

- General procedural contraindications
- US generally safe
- Recognize limits
 Skills
 Equipment
 Technique
 Unexpected

Masses

"r/o Baker's Cyst" V

USG MSK INTERVENTIONS

- Ergonomics •Patient lying •Get comfortable Choose transducer Linear Array Superficial structures Needle angle not steep
 - Curvilinear Array

 - Deep structures Steep needle angle

USG MSK INTERVENTIONS Plan Procedure

Schuenke Thieme 2007

USG MSK INTERVENTIONS General Procedure – Set-up

Aseptic technique

Prep skin
Sterile probe cover
Sterile US gel

Ergonomics

See injection site, needle & machine

Free-hand technique Non-dominant holds

transducerDominant holds needle

USG MSK INTERVENTIONS In Plane Approach

• Also called:

Long axisLongitudinal

- Needle co-linear with transducer
- Visualize tip & shaft
- Preferred

USG MSK INTERVENTIONS In Plane Approach - Pitfalls

Visualization depends on obliquity

V

Barton Health

V

USG MSK INTERVENTIONS Out of Plane Approach

- Also called:
 Short axis
 Transverse
- Needle perpendicular to transducer
- Appears as dot
- Challenging use prn
 Superficial joints

USG MSK INTERVENTIONS Out of Plane Approach - Pitfalls

Tip Under Tx Tip Past Tx Tip Oblique & All Look Same Past Tx

22 G SHORT AXIS

USG MSK INTERVENTIONS Out of Plane Approach - Solution

- Move tip in & out of field
- Walk-down advancement

USG MSK INTERVENTIONS Procedure – Entry Site

- Deeper target requires entry site farther away from transducer due to effect if obliquity on needle visualization
- Ensure adequate needle length

USG MSK INTERVENTIONS Procedure – Technique

- Cold Spray
- Penetrate skin 1 cm
- Find needle
- Advance real-time
- Local anesthesia
 Test trajectory
 Hydrodissection

USG MSK INTERVENTIONS Procedure – Pitfalls & Pearls

 Anchor transducer!!!
 Can't see tip → don't advance
 Don't move needle & transducer at the same time
 Know when to withdrawal and redirect

Strive for parallel

- If can't get parallel, try:
 - Heel-toe

V

Or:
 Oblique stand-off

Lift one end of Tx
 Anchor other
 Fill gap with gel

USG MSK INTERVENTIONS Oblique Stand-off: OOP -> IP

Needle choice
 Length
 Size (gauge) matters
 but not that much
 Echogenic

Having difficulty finding your needle tip? Jiggle •Rotate bevel •Stylet

V

V

USG MSK INTERVENTIONS Once You are in the Target

- Take a picture with the needle in the target
- Aspirate
- Inject under direct US visualization
- Re-scan area to ensure correct location of injectate
- Consider picture to document location of injectate

USG MSK INTERVENTIONS Conclusions

- US is a powerful tool for guided interventions in the MSK system
- More accurate and likely more efficacious and cost effective than palpation guided injections
- Visualization of the needle is crucial
 In plane approach with minimal obliquity is the goal

USG MSK INTERVENTIONS Conclusions

Planning for safe and efficient procedures requires:
Appreciation of basic US physics
Choosing right equipment for the job
Knowledge of anatomy
Skills to find, track, & advance needle
Recognizing limits
This is harder than it looks
Practice is key!!!

Thank you

USG MSK INTERVENTIONS References

- Bianchi S, Martinoli C. Ultrasound of the Musculoskeletal System. Springer, New York, pp. 889-918, 2007.
- McNally E. Practical Musculoskeletal Ultrasound. Elsevier, Philadelphia, pp. 283-308, 2005.
- Anatomic images were obtained from: Schuenke et al. THIEME Atlas of Anatomy – General Anatomy and Musculoskeletal System. All rights reserved. THIEME 2007, www.thieme.com

